分类
2022年最佳外汇机器人

期权定价方法之B-S模型


从图中可以看出,BS模型对期权实际价格的预测情况差强人意,预测初期和预测末期的精准度不错,而预测中期则波动较大。

期权定价的数学模型和方法

一个广为使用的期权定价模型,获Nobel Prize。
由BlackScholoes和Melton提出的。
具体证明我就不写了你可以去看原始Paper。
简单说一下:
首先,股价随机过程是马氏链(弱式有效)
假设股价收益率服从维纳过程(布朗运动的数学模型)
则衍生品价格为股价的函数。由ito引理可知衍生品价格服从Ito过程(飘移率和方差率是股价的函数)
第二:通过买入和卖空一定数量的衍生证券和标的证券,Blacksholes发现可以建立一个无风险组合。根据有效市场中无风险组合只获得无风险利率。从而得到一个重要的方程: Black-Scholes微分方程。
第三:根据期权或任何衍生品的条约可列出边界条件。带入微分方程可得定价公式

Black-Scholes期权定价模型虽然有许多优点, 但是它的推导过程难以为人们所接受。在1979年, 罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型, 称为二项式模型(Binomial Model)或二叉树法(Binomial tree)。 二项期权定价模型由考克斯(J.C.Cox)、罗斯(S.A.Ross)、鲁宾斯坦(M.Rubinstein)和夏普(Sharpe)等人提出的一种期权定价模型,主要用于计算美式期权的价值。其优点在于比较直观简单,不需要太多数学知识就可以加以应用。

black-scholes考虑了期权的时间价值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~

black-scholes考虑了期权的时间价值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~

构建二项式期权定价模型
编辑
1973年,布莱克和舒尔斯(Black and Scholes)期权定价方法之B-S模型 提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)期权定价方法之B-S模型 在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。
1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。
二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。
随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。
一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价 格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一 证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。

SerΔt = pSu + (1 − p)Sd(23)
即:e^=pu+(1-p)d=E(S)(24)
又因股票价格变化符合布朗运动,从而 δS N(期权定价方法之B-S模型 rSΔt,σS√Δt)(25)
=>D(S) = 期权定价方法之B-S模型 σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 期权定价方法之B-S模型 + (1 − p)(d)2 − [pu + (1 − p)d]2(26)
又因为股价的上扬和下跌应满足:ud=1(27)
由(24),(26),(27)可解得:

black-scholes考虑了期权的时间价值。 1.bs公式的原推导过程应用了偏微分方程和随机过程中专的几何布朗运动属性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。 2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式. 3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。 ~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~

期权定价模型之经典--BS模型

小龚是也 于 2021-12-16 13:14:22 发布 11578 收藏 期权定价方法之B-S模型 54

Black-Scholes-Merton模型

一、BS模型

1.模型简介

期权定价理论最早的提出者是法国的经济学家 Bachelier,其在
1900 年的一篇文章中首次提出关于期权定价的问题,随后,Boness
将其理论进行补充。在 1973 年,美国的数学家、经济学家 Black 和
Scholes提出了一个较为完整的期权定价模型,称为 Balck-choles 模型。Balck-Scholes 模型是较为理想的欧式期权定价模型,该模型的提出为期权的发展奠定了基础,在理论和实践方面都有着重大的意义。

Black-Scholes 期权的价格模型是建立在严格的假设基础上的,包
括以下几点:
首先,期权标的物的价格服从布朗几何运动,因此股票价格的收
益率必须服从对数正态分布。 期权定价方法之B-S模型
第二,商业市场没有摩擦,没有税收,没有卖空限制。
第三,无风险利率不变。
第四,期权不能在到期日之前行使,必须是欧式期权。

2.模型数学公式

在这里插入图片描述
在这里插入图片描述

二、BS模型的python量化

1.BS模型代码

举例

在这里插入图片描述

实际数据
将上证50ETF期权一分钟高频数据进行实证。
数据一览

在这里插入图片描述


从图中可以看出,BS模型对期权实际价格的预测情况差强人意,预测初期和预测末期的精准度不错,而预测中期则波动较大。

2.期权定价方法之B-S模型 预测误差分析

均方误差(Mean Square Error)
均方根误差(Root Mean Square Error)
平均绝对误差(Mean Absolute Error)
平均绝对百分比误差(Mean Absolute Percentage Error)
以上指标越小表明误差越小。

在这里插入图片描述

三、期权的内在价值

站在期权合约持有人的角度,可以用期权的内在价值(inner value)刻画到期日时持有人的收益情况:
h=max(St-K,0)

例子
假设指数期权行权价为3650,指数在到期日时的收盘价在3500-3800之间。

在这里插入图片描述


可以看出,期权的内在价值取决于到期日当天的标的资产价格水平。

在这里插入图片描述

实际数据
上证50ETF期权一分钟高频数据分析

通过图可以看出,实际数据中,标的资产价格大于行权价,其内在价值大于0

在这里插入图片描述

四、期权的时间价值

在这里插入图片描述


期权的时间价值等于期权价格减去期权的内在价值。
例子

在这里插入图片描述


从图中可以看出,期权的时间价值在指数价格等于行权价时达到最高,此后开始逐渐衰减。

布莱克-斯科尔斯期权定价模型

期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。大多从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

一、BS模型

期权定价理论最早的提出者是法国的经济学家 Bachelier,其在
1900 年的一篇文章中首次提出关于期权定价的问题,随后,Boness
将其理论进行补充。在 1973 年,美国的数学家、经济学家 Black 和
Scholes提出了一个较为完整的期权定价模型,称为 Balck-choles 模型。Balck-Scholes 模型是较为理想的欧式期权定价模型,该模型的提出为期权的发展奠定了基础,在理论和实践方面都有着重大的意义。

Black-Scholes 期权的价格模型是建立在严格的假设基础上的,包
括以下几点:
首先,期权标的物的价格服从布朗几何运动,因此股票价格的收
益率必须服从对数正态分布。
第二,商业市场没有摩擦,没有税收,没有卖空限制。
第三,无风险利率不变。
第四,期权不能在到期日之前行使,必须是欧式期权。

2.模型数学公式

在这里插入图片描述
在这里插入图片描述

二、BS模型的python量化

1.BS模型代码

举例

在这里插入图片描述

实际数据
将上证50ETF期权一分钟高频数据进行实证。
数据一览

在这里插入图片描述


从图中可以看出,BS模型对期权实际价格的预测情况差强人意,预测初期和预测末期的精准度不错,而预测中期则波动较大。

2.预测误差分析

均方误差(Mean Square Error)
均方根误差(Root Mean Square Error)
平均绝对误差(Mean Absolute Error)
平均绝对百分比误差(Mean Absolute Percentage Error)
以上指标越小表明误差越小。

在这里插入图片描述

三、期权的内在价值

站在期权合约持有人的角度,可以用期权的内在价值(inner value)刻画到期日时持有人的收益情况:
h=max(St-K,0)

例子
假设指数期权行权价为3650,指数在到期日时的收盘价在3500-3800之间。

在这里插入图片描述


可以看出,期权的内在价值取决于到期日当天的标的资产价格水平。

在这里插入图片描述

实际数据
上证50ETF期权一分钟高频数据分析

通过图可以看出,实际数据中,标的资产价格大于行权价,其内在价值大于0

在这里插入图片描述

四、期权的时间价值

在这里插入图片描述


期权的时间价值等于期权价格减去期权的内在价值。
例子

在这里插入图片描述


从图中可以看出,期权的时间价值在指数价格等于行权价时达到最高,此后开始逐渐衰减。